SUPPORTING INFORMATION

An Oxidative Entry into the Amido Trioxadecalin Ring System

Jason C. Rech and Paul E. Floreancig

Department of Chemistry

University of Pittsburgh

Pittsburgh, PA 15260

Experimental

General Experimental:

Proton (1 H NMR) and carbon (13 C NMR) nuclear magnetic resonance spectra were recorded on Bruker Avance 300 spectrometers at 300 MHz and 75 MHz, respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak or the internal standard tetramethylsilane were used as reference values. For 1 H NMR: CDCl₃ = 7.27 ppm, TMS = 0.00. For 13 C NMR: CDCl₃ = 77.23, TMS = 0.00. For proton data: s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets, dt = doublet of triplets, ddt = doublet of doublets of triplets; br = broad; m = multiplet; app t = apparent triplet; app q = apparent quartet; app p = apparent pentet. High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer. Infrared (IR) spectra were collected on a Mattson Gygnus 100 spectrometer.

Analytical thin layer chromatography (TLC) was performed on E. Merck pre-coated (25 nm) silica gel 60F-254 plates. Visualization was done under UV (245 nm). Flash column chromatography was preformed using ICN SiliTech 32-63 60µ silica gel. Reagent grade ethyl acetate and hexanes (commercial mixture) were purchased from EM Science and used as is for chromatography. Reagent grade methylene chloride (CH₂Cl₂), dichloroethane (C₂H₄Cl₂), acetonitrile (CH₃CN), benzene and toluene were distilled from CaH₂. Diethyl ether (Et₂O) and tetrahydrofuran (THF) were distilled from sodium benzophenone ketal prior to use. Anhydrous *N,N*-dimethylformamide (DMF), methanol (MeOH), dimethylformamide (DMF), methanol (MeOH), dimethylformamide (DMSO) were purchased from Aldrich and used as is. All reactions were conducted under nitrogen atmosphere, unless otherwise specified.

4-Phenylbutane-1,3-diol

Ozone was bubbled through a solution of 1-phenylpent-4-en-2-ol¹ (7.00 g, 43.1 mmol) in CH₂Cl₂ (50 mL) at -78 °C was bubbled O₃ until the reaction mixture sustained a dark blue color. Methanol (50 mL) was added to the solution at -78 °C followed by the slow addition of NaBH₄ (6.53 g, 172 mmol). The reaction was stirred at -78 °C for 1 hour then it was slowly warmed to room temperature and stirred for 4 hours. The reaction was concentrated under reduced pressure and extracted with EtOAc. The organic layers were combined, washed with water and brine,

dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (40% EtOAc in hexanes) to provide the desired product (5.21 g, 78%): 1 H NMR (300 MHz, CDCl₃) δ 7.30-7.22 (m, 5 H), 4.12-4.08 (m, 1 H), 3.89-3.82 (m, 2 H), 2.83-2.77 (m, 2 H), 2.28 (bs, 2 H), 1.80-1.75 (m, 2 H); 13 C NMR (75 MHz, CDCl₃) δ 137.9, 129.4, 128.6, 126.6, 73.1, 61.7, 44.3, 37.7; IR (neat) 3349, 3026, 2938, 1052 cm⁻¹; HRMS (EI) calcd. for $C_{10}H_{14}O_{2}$ (M⁺) 166.0993, found 166.0996.

OTBS 4-(tert-Butyldimethylsilanyloxy)-1-phenylbutan-2-ol

To a solution of 3-phenylpropane-1,2-diol (1.72 g, 10.2 mmol) in CH_2Cl_2 (50 mL) at room temperature was added imidazole (1.51 g, 22.4 mmol). The solution was stirred for 10 minutes then cooled to -42 °C. TBSCl (1.64 g, 11.2 mmol) was added to the reaction mixture which was stirred for two hours at -42 °C. Saturated aqueous NH_4Cl was added and the reaction mixture to warmed to room temperature. The reaction mixture was extracted with CH_2Cl_2 . The organic layers were combined, washed with brine, dried with $MgSO_4$, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (30% EtOAc in hexanes) to provided the desired product (2.63 g, 93%): 1H NMR (300 MHz, $CDCl_3$) δ 7.32-7.18 (m, 5 H), 4.11-4.03 (m, 1 H), 3.92-3.85 (m, 1 H), 3.82-3.74 (m, 1 H), 3.32 (bs, 1 H), 2.85 (dd, J = 13.5, 7.0 Hz, 1 H), 2.73 (dd, J = 13.5, 6.2 Hz, 1 H), 1.72-1.60 (m, 2 H), 0.90 (s, 9 H), 0.07 (s, 6 H); ^{13}C NMR (75 MHz, $CDCl_3$) δ 138.8, 129.5, 128.4, 126.3, 72.8, 62.5, 44.0, 36.9, 25.8, 18.1, -5.5; IR (neat) 3450, 2953, 2857 cm $^{-1}$; HRMS (EI) calcd. for $C_{16}H_{28}O_2Si$ (M^+) 280.1858, found 280.1815.

3-Azido-4-phenylbutoxy-tert-butyldimethylsilane

Warning: To avoid a possible explosion, extreme care should be taken to remove all CH₂Cl₂ after mesylate formation before NaN₃ is added. To a solution of 4-(tert-butyldimethylsilanyloxy)-1-phenylbutan-2-ol (9.36 g, 33.2 mmol) in CH₂Cl₂ (100 mL) was added triethylamine (13.4 g, 0.132 mol) and the solution was cooled to 0 °C. Methanesulfonyl chloride (5.70 g, 49.8 mmol) was added dropwise and the solution was stirred for 3.5 hours at 0 °C. Brine was added and the reaction was allowed to warm to room. The reaction mixture was extracted with hexanes. The organic layers were combined, washed with H₂O, dried with MgSO₄, filtered and concentrated under reduced pressure. The resulting oil was taken up in DMF (60 mL) and NaN₃ (10.3g, 0.158 mol) and tetrabutylammonium iodide (0.031 g, 0.080 mmol) were added. The solution was stirred at 55 °C for 14 hours. The reaction was allowed to cool to room temperature, H₂O was added and the reaction mixture was extracted with The organic layers were combined, dried with MgSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (5% EtOAc in hexanes) to provide the desired product (6.93 g, 68%): ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.21 (m, 5 H), 3.77-3.71 (m, 1 H), 3.74-3.71 (m, 2 H), 2.85 (dd, J = 13.8, 6.0 Hz, 1 H), 2.84 (dd, J = 13.8, 7.8 Hz, 1 H), 1.78-1.76 (m, 1 H), 1.67-1.62 (m, 1 H), 0.89 (s, 9 H), 0.05 (s, 3 H), 0.04 (s, 6 H); 13 C NMR (75 MHz, CDCl₃) δ 139.5, 129.3, 128.5, 126.7, 60.8, 59.5, 41.1, 37.0, 25.9, 18.1, -5.4; IR (neat) 2955, 2930, 2857, 2100, 1812, 1742 cm⁻¹; HRMS (EI) calcd. for C₁₆H₂₇N₃OSi (M-C₄H₉) 248.1201, found 248.1207.

To a solution of 3-azido-4-phenylbutoxy-*tert*-butyldimethylsilane (1.20 g, 3.93 mmol) in THF (20 mL) was added triphenylphosphine (1.24 g, 4.72 mmol) and the reaction mixture was stirred for 6 hours at

room temperature. To the reaction mixture was added H_2O (4 mL). The reaction mixture was stirred for 8 hours at room temperature. To the reaction mixture was added triethylamine (1.19 g, 11.8 mmol) followed by hexanoyl chloride (1.05 g, 7.86 mmol). The reaction mixture was stirred for 6 hours at room temperature. The reaction mixture was extracted with EtOAc. The organic layers were combined, washed with brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (1.31 g, 88%): 1 H NMR (300 MHz, CDCl₃) δ 7.31-7.19 (m, 5 H), 6.17 (d, J = 7.5 Hz, 1 H), 4.34-4.23 (m, 1 H), 3.83 (ddd, J = 10.5, 8.7, 4.5 Hz, 1 H), 3.72-3.64 (m, 1 H), 3.00 (dd, J = 13.5, 5.5 Hz, 1 H), 2.74 (dd, J = 13.5, 8.2 Hz, 1 H), 2.11 (t, J = 7.2 Hz, 2 H), 1.81-1.70 (m, 1 H), 1.67-1.51 (m, 3 H), 1.35-1.24 (m, 4 H), 0.92 (s, 9 H), 0.89 (t, J = 7.1 Hz, 3 H), 0.08 (s, 3 H), 0.07 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ 172.6, 138.4, 129.4, 128.3, 126.3, 60.6, 49.3, 40.0, 37.1, 34.8, 33.9, 31.2, 25.9, 24.4, 22.4, 13.9, -5.4; IR (neat) 3287, 2930, 2858, 1711, 1643, 1097 cm $^{-1}$; HRMS (EI) calcd. for $C_{21}H_{36}NO_2Si$ (M-CH₃) 362.2515, found 362.2521.

Hexanoic acid 1-benzyl-3-hydroxypropylamide (5)

To a solution of hexanoic acid 1-benzyl-3-tert-butyl-dimethyl-silanyloxy-propyl-amide (549 mg, 1.45 mmol) in THF (13 mL) at 0 °C was added tetrabutylammonium fluoride (TBAF) (1.14 g, 4.35 mmol).

The reaction mixture was warmed to room temperature and stirred for 2 hours. H_2O was added the reaction mixture was extracted with EtOAc. The organic layers were combined, washed with brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50%EtOAc in hexanes) to provide the desired product (3.43 mg, 89%): 1H NMR (300 MHz, CDCl₃) δ 7.30-7.13 (m, 5 H), 5.52 (d, J = 8.4 Hz, 1 H), 4.43-4.34 (m, 1 H), 3.71 (bs, 1 H), 3.61-3.64 (m, 2 H), 2.87 (dd, J = 14.0, 6.0 Hz, 1 H), 2.73 (dd, J = 14.0, 7.8 Hz, 1 H), 2.13-2.06 (m, 2 H), 1.92-1.84 (m, 1 H), 1.48 (p, J = 7.2, 2 H), 1.36-1.27 (m, 1 H), 1.24-1.07 (m, 4 H), 0.82 (t, J = 6.9 Hz, 3 H); ^{13}C NMR (75 MHz, CDCl₃) δ 174.5, 137.5, 129.1, 128.6, 126.7, 58.4, 46.8, 41.2, 37.8, 36.6, 31.2, 25.4, 22.3, 13.9; IR (neat) 3280, 2929, 1647, 1621, 1544, 1054 cm $^{-1}$; HRMS (EI) calcd. for $C_{16}H_{25}NO_2$ (M $^+$) 263.1885, found 263.1886.

Hexanoic acid 1-benzyl-3-(2-trimethylsilylethoxymethoxy)propylamide (6)

To a solution of **5** (0.10 g, 0.38 mmol) in CH₂Cl₂ (2 mL) at room temperature was added *N*,*N*-diisopropylethylamine

(DIPEA) (2 mL) followed by 2-(trimethylsilyl)ethoxymethyl chloride (0.13 g, 0.76 mmol). The reaction mixture was heated to 45 °C for 8 hours. The reaction mixture was cooled to room temperature and H₂O was added. The reaction mixture was extracted with CH₂Cl₂. The organic layers were combined, washed with 10% aqueous acid and brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting

oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (0.14 g, 92%): 1 H NMR (300 MHz, CDCl₃) δ 7.29-7.16 (m, 5 H), 5.79 (d, J = 8.2 Hz, 1 H), 4.63 (s, 2 H), 4.35-4.23 (m, 1 H), 3.71-3.55 (m, 4 H), 2.89 (dd, J = 13.6, 6.0 Hz, 1 H), 2.79 (dd, J = 13.6, 8.1 Hz, 1 H), 2.10 (t, J = 8.1 Hz, 2 H), 1.88-1.77 (m, 1 H), 1.65-1.50 (m, 3 H), 1.33-1.17 (m, 4 H), 0.92 (t, J = 8.5 Hz, 2 H), 0.87 (t, J = 6.8 Hz, 3 H), 0.01 (s, 9 H); 13 C NMR (300 MHz, CDCl₃) δ 172.4, 137.9, 129.3, 128.3, 126.3, 94.9, 65.2, 48.4, 40.3, 36.9, 32.9, 31.3, 25.3, 22.3, 21.0, 18.0, 13.8, -1.5; IR (neat) 3282, 2954, 1639, 1549, 1060 cm $^{-1}$; HRMS (EI) calcd. for $C_{22}H_{39}NO_3Si$ (M $^+$) 393.2699, found 393.2706.

To a solution of **6** (0.11 g, 0.28 mmol) in dichloroethane (6 mL) at room temperature was added *N*-methylquinolinium hexafluorophosphate (NMQ) (4.0 mg, 0.01 mmol), NaOAc (0.22 g, 200 wt.%), Na₂S₂O₃ (0.22 g, 200 wt.%) and toluene (1 mL). Air was gently bubbled through the suspension and the solution was irradiated for 4 hours. The reaction mixture was filtered through a small plug of silica, and concentrated under reduced pressure. The resulting oil was purified by column flash chromatography (80% EtOAc in hexanes) to provide **7** (60 mg, 67%): ¹H NMR (300 MHz, CD₂Cl₂) δ 6.85 (br, 1H), 5.44-5.38 (m, 1 H), 4.65 (s, 2 H), 3.94 (d, *J* = 3.2 Hz, 1 H), 3.82-3.75 (m, 1 H), 3.67-3.54 (m, 3 H), 2.14 (t, *J* = 7.3 Hz, 2 H), 1.92-1.84 (m, 2 H), 1.63-1.53 (m, 2 H), 1.36-1.24 (m, 4 H), 0.96-0.87 (m, 5 H), 0.02 (s, 9 H); ¹³C NMR (75 MHz, CD₂Cl₂) δ 175.1, 95.3, 73.8, 65.6, 63.9, 37.1, 34.7, 31.7, 25.4, 22.7, 18.4, 14.0, -1.4; IR (neat) 3299, 2955, 1654, 1538, 1249, 1060 cm⁻¹; LRMS (EI): *m/z* 320, 302, 262, 246, 232, 202, 188, 172.

4-Chloromethoxybutoxymethylbenzene

To a solution of 4-benzyloxybutanol (1.22 g, 6.78 mmol) in CH₂Cl₂ was added paraformaldehyde (0.200 g, 6.78 mmol) and the suspension was cooled to 0 °C. HCl (g) was bubbled through the reaction mixture until the paraformaldehyde was consumed (approximately 1 hour). The reaction mixture was place under HCl atmosphere and stirred for an additional 4 hours at 0 °C. Nitrogen was bubbled through the solution to remove the HCl, the solution was dried with NaSO₄, filtered, concentrated under reduced pressure providing the desired product in quantitative yield. The product was used without purification: crude ¹H NMR (300 MHz, C₆D₆) δ 7.28-7.15 (m, 5 H), 5.07 (s, 2 H), 4.35 (s, 2 H), 3.43-3.38 (m, 2 H), 3.32-3.25 (m, 2 H), 1.63-1.55 (m, 4 H).

To a solution of **5** (0.20 g, 0.77 mmol) in CH₂Cl₂ (2 mL) at room temperature was added *i*-Pr₂NEt (2 mL)

followed by 4-chloromethoxybutoxymethyl-benzene (0.30 g, 1.2 mmol). The reaction mixture was heated to 45 °C for 8 hours. The reaction mixture was cooled to room temperature and H_2O was added. The reaction mixture was extracted with CH_2Cl_2 . The organic layers were combined, washed with 10% aqueous acid and brine, dried with

NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (0.32 g, 93%): 1 H NMR (300 MHz, CDCl₃) δ 7.36-7.17 (m, 10 H), 5.65 (d, J = 8.2 Hz, 1 H), 4.64 (s, 2 H), 4.50 (s, 2 H), 4.29 (br, 1 H), 3.69-3.47 (m, 6 H), 2.90 (dd, J = 13.6, 5.9 Hz, 1 H), 2.77 (dd, J = 13.6, 7.3 Hz, 1 H), 2.15-2.10 (m, 2 H), 1.89-1.79 (m, 1 H), 1.72-1.52 (m, 7 H), 1.32-1.18 (m, 4 H), 0.89 (t, J = 6.8 Hz, 3 H); 13 C NMR (75 MHz, CDCl₃) δ 172.8, 138.9, 138.3, 129.8, 128.7, 128.6, 127.9, 127.8, 126.7, 95.8, 73.2, 70.4, 68.1, 65.4, 48.8, 40.8, 37.3, 33.4, 31.7, 26.8, 26.8, 25.7, 22.7, 17.2; IR (neat) 3290, 2928, 1641, 1547, 1113 cm⁻¹; HRMS (EI) calcd. for C₂₁H₃₄NO₄ (M-C₇H₇) 364.2488, found 364.2495.

Hexanoic acid 1-benzyl-3-(4-hydroxybutoxymethoxy)propylamide

To a solution of hexanoic acid 1-benzyl-3-(4-benzyloxybutoxymethoxy)propylamide (0.22 g, 0.49

mmol) in ethanol at room temperature was added Pd/C (44 mg, 20 wt.%). The reaction mixture was placed under hydrogen atmosphere and stirred at room temperature for 8 hours. The reaction mixture was run through a pad of celite, concentrated under reduced pressure and purified by flash chromatography (80% EtOAc in hexanes) to provide the desired product (0.17 g, 98% yield): 1 H NMR (300 MHz, CDCl₃) δ 7.31-7.17 (m, 5 H), 5.67 (d, J = 8.0 Hz, 1 H), 4.66 (s, 2 H), 4.38-4.26 (m, 1 H), 3.69-3.51 (m, 6 H), 2.91 (dd, J = 13.7, 6.2 Hz, 1 H), 2.79 (dd, J = 13.7, 7.1 Hz, 1 H), 2.26 (bs, 1 H), 2.11 (t, J = 6.7 Hz, 2 H), 1.91-1.82 (m, 1 H), 1.71-1.49 (m, 7 H), 1.34-1.17 (m, 4 H), 0.86 (t, J = 6.7 Hz, 3 H); 13 C NMR (300 MHz, CDCl₃) δ 172.7, 137.9, 129.5, 138.4, 126.4, 95.5, 68.0, 65.2, 62.5, 48.3, 40.7, 36.9, 33.4, 31.4, 29.8, 26.4, 25.4, 33.4, 13.9; IR (neat) 3289, 2930, 1643, 1549, 1046 cm⁻¹; HRMS (EI) calcd. for $C_{21}H_{36}NO_4$ (M+H) 366.2644, found 366.2632.

Hexanoic acid 1-benzyl-3-(tetrahydrofuran-2-yloxymethoxy)propylamide (8)

solution of hexanoic acid 1-benzyl-3-(4hydroxybutoxymethoxy)propylamide (0.17 g, 0.48 mmol) in cyclohexane was added iodobenzene diacetate (0.34 g, 1.1 mmol) and iodine (96 mg, 0.76 mmol). The reaction mixture was irradiated for 2 hours. The reaction mixture was extracted with EtOAc, washed with saturated aqueous Na₂S₂O₃ and brine, dried with NaSO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product as a mixture of diastereomers (0.10 g, 59%): ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.17 (m, 5 H), 5.80 (d, J = 7.9 Hz, 1 H), 5.36-5.32 (m, 1 H), 4.90-4.85 (m, 1 H), 4.64-4.58 (m, 1 H), 4.32-4.24 (m, 1 H), 3.96-3.81 (m, 1 H), 3.79-3.71 (m, 1 H), 3.70-3.62 (m, 1 H), 3.56-3.48 (m, 1 H), 2.96-2.86 (m, 1 H), 2.81-2.74 (m, 1 H), 2.13-2.00 (m, 2 H), 1.99-1.75 (m, 5 H), 1.67-1.52 (m, 3 H), 1.34-1.15 (m, 4 H), 0.88 (t, J = 6.7 Hz, 3 H); ¹³C NMR (300 MHz, CDCl₃) δ 172.6, 138.1, 129.4, 129.1, 126.3, 101.5, 92.7, 67.3, 65.7, 48.8, 48.4, 40.4, 36.9, 32.7, 31.4, 25.4, 23.5, 23.2, 13.9; IR (neat) 3289, 2929, 1614, 1544 cm⁻¹; HRMS (EI) calcd. for $C_{19}H_{28}NO_4$ (M- C_2H_5) 334.2018, found 334.2036.

Hexanoic acid 1,3-dioxan-4-ylamide (9)

To a solution of **8** (90 mg, 0.25 mmol) in dichloroethane (6 mL) at room temperature were added NMQPF₆ (3.5 mg, 0.01 mmol), NaOAc (0.18 g, 200 wt.%), Na₂S₂O₃ (0.18 g, 200 wt.%), 4 Å molecular sieves (0.18 g, 200 wt.%) and toluene (1 mL). Air was gently bubbled through the suspension while it was irradiated for 4 hours. The reaction mixture was filtered through a small plug of silica, and concentrated under reduced pressure. The resulting oil was purified by column flash chromatography (50% EtOAc in hexanes) to provide the desired product (39 mg, 79%): ¹H NMR (300 MHz, CD₂Cl₂) δ 5.92 (br, 1 H), 5.43 (td, J = 10.0, 2.8 Hz, 1 H), 5.05 (d, J = 6.5 Hz, 1 H), 4.83 (d, J = 6.5 Hz, 1 H), 4.15 (app dd, J = 11.6, 4.9 Hz, 1 H), 3.79 (td, J = 11.7, 2.8 Hz, 1 H), 2.22 (t, J = 7.3 Hz, 2 H), 1.91-1.78 (m, 1 H), 1.75-1.60 (m, 3 H), 1.35-1.26 (m, 4 H), 0.90 (t, J = 6,9 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 92.8, 77.2, 65.9, 36.7, 32.1, 31.3, 25.0, 22.4, 13.9; IR (neat) 3325, 2927, 1661, 1540, 1015 cm⁻¹; HRMS (EI) calcd. for C₁₀H₁₉NO₃ (M⁺) 201.1365, found 201.1361.

4,5-Dimethoxy-6-methoxymethyl-2-vinyltetrahydropyran-3-ol

Preparation of 0.010 M trivinylalane:² To a suspension of AlCl₃ (4.44 g, 33.3 mmol) in CH₂Cl₂ (233 mL) at room temperature was added vinylmagnesium bromide (1 M in THF, 100 mL, 100 mmol) drop wise, f 1 hour. The solution was cooled when necessary to prevent reflux and

over a period of 1 hour. The solution was cooled when necessary to prevent reflux and stirred at room temperature for 4 hours.

Synthesis of 4,5-dimethoxy-6-methoxymethyl-2-vinyltetrahydropyran-3-ol: solution of 10 (3.00 g, 16.0 mmol) in CH₂Cl₂ (10 mL) cooled to 0 °C was added dimethyldioxirane³⁻⁵ (0.2 M, 76.8 mL, 17.2 mmol) and the solution was stirred for 30 minutes. The solution was concentrated under reduced pressure, taken up in CH₂Cl₂ (60 mL), and added drop wise over a period of 1 hour to a solution of trivinylalane (0.010 M, 333 mL) cooled to -60 °C. The reaction mixture was allowed to slowly warm to room temperature and stir for 8 hours. The reaction was carefully quenched with H₂O, 10% aqueous HCl was added until the aluminum salts disappeared, and the solution was extracted with ether. The organic layers were combined, washed with 10% HCl and brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (60% EtOAc) to provide the desired product (2.52 g, 62 %): ¹H NMR (500 MHz, CDCl₃) δ 6.05 (ddd, J = 16.2, 10.8, 5.4 Hz, 1 H),5.42 (ddd, J = 17.5, 1.7, 1.7 Hz, 1 H), 5.37 (ddd, J = 10.7, 1.7, 1.7 Hz, 1 H), 4.46 (ddd, J= 5.1, 1.6, 1.6 Hz, 1 H), 3.83 (app dt, J = 7.8, 4.1 Hz, 1 H), 3.71 (dd, J = 7.6, 5.0 Hz, 1 Hz)H), 3.60 (dd, J = 10.0, 4.7 Hz, 1 H), 3.59 (dd, J = 10.4, 3.7 Hz, 1 H), 3.59 (s, 3 H), 3.50 (s, 3 H), 3.44 (s, 3 H), 3.34 (app t, J = 7.2 Hz, 1 H), 3.28 (app t, J = 7.2 Hz, 1 H), 2.28 (bs, 1 H); ¹³C (125 MHz, CDCl₃) δ 132.7, 119.2, 82.0, 78.8, 73.9, 72.8, 71.0, 70.5, 59.9, 59.4, 59.2; IR (neat) 3450, 2930, 1081 cm⁻¹; $[\alpha]_{D}^{25}$ +98.87 (c 3.20, CHCl₃); HRMS (EI) calcd. for $C_{11}H_{20}O_5$ (M⁺) 232.1311, found 232.1303.

tert-Butyl-(4,5-dimethoxy-6-methoxymethyl-2-vinyltetrahydropyran-3-yloxy)dimethylsilane (11)

To a solution of 4,5-dimethoxy-6-methoxymethyl-2-vinyltetrahydropyran-3-ol (0.40 g, 1.6 mmol) in CH₂Cl₂ (1.6 mL) was added 2,6-lutidine (0.35 g, 3.2 mmol). The solution was cooled to 0 °C and TBSOTf (0.64 g, 3.4 mmol) was added dropwise. The reaction mixture was allowed to warm to

room temperate and was stirred for 30 minutes. The reaction was quenched with saturated aqueous NH₄Cl and extracted with CH₂Cl₂. The organic layers were combined, washed with brine, dried NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (5% EtOAc in hexanes) to provide the desired product (0.43 g, 77%): ¹H NMR (300 MHz, CDCl₃) δ 6.08 (ddd, J = 17.6, 11.0, 3.4 Hz, 1 H), 5.45-5.36 (m, 2 H), 4.39-4.36 (m, 1 H), 3.77-3.72 (m, 1 H), 3.63-3.53 (m, 3 H), 3.58 (s, 3 H), 3.53 (s, 3 H), 3.40 (s, 3 H), 3.17 (app t, J = 9.0 Hz, 1 H), 3.10 (app t, J = 9.0 Hz, 1 H), 0.89 (s, 9 H), 0.11 (s, 3 H), 0.05 (s, 3 H); ¹³C (75 MHz, CDCl₃) δ 131.9, 119.1, 85.2, 80.3, 76.3, 72.7, 71.6, 71.5, 61.2, 60.4, 59.2, 25.7, 17.9, -4.7, -4.9; IR (neat) 2931, 2894, 1114, 1093 cm⁻¹; $[\alpha_D]^{25}_D$ +81.5 (c 3.2, CHCl₃); HRMS (ES) calcd. for (M+K) 385.1813, found 385.1800.

A solution of 11 (0.387 g, 1.12 mmol) in CH₂Cl₂ was cooled to -78 °C and ozone was gently bubbled through the solution until it sustained a deep purple. Triphenylphosphine (0.587 g, 2.24 mmol) was added at -78 °C and the reaction mixture was warmed to room temperature and stirred for 2 hours. The reaction mixture was concentrated under reduced pressure, taken up in THF (4 mL) and at room temperature Ti(OiPr)₄ (1.59 g, 5.60 mmol) was added followed by the addition of (R_s)-tertbutanesulfinamide (0.245 g, 2.00 mmol). The reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was poured into an equal volume of brine, filtered through a pad of Celite and extracted with EtOAc. The organic layers were combined, washed with brine, dried with NaSO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (20% EtOAc in hexanes) to provide the desired product (0.396 g, 71 %): ${}^{1}H$ NMR (300 MHz, CDCl₃) δ 8.34 (d, J = 2.3 Hz, 1 H), 4.60 (dd, J = 6.7, 2.3 Hz, 1 H), 3.95 (m, 2 H), 3.62-3.55 (m, 2 H), 3.57 (s, 3 H), 3.53 (s, 3 H)H), 3.41 (s, 3 H), 3.42 (app t, J = 9.2 Hz, 1 H), 3.09 (app t, J = 9.4 Hz, 1 H), 1.12 (s, 9 H), 0.91 (s, 9 H), 0.14 (s, 3H), 0.12 (s, 3 H); 13 C (75 MHz, CDCl₃) δ 166.3, 85.6, 80.0, 76.6, 73.8, 72.8, 71.1, 61.2, 60.4, 59.1, 57.1, 25.8, 22.4, 18.0, -4.7, -4.9; IR (neat) 2929, 1712, 1095 cm⁻¹; $[\alpha]^{25}_{D}$ + 28.27 (c 0.53, CHCl₃); HRMS (EI) calcd. for (M-CH₃) 436.2189 found 436.2170.

1,3-(tert-Butyldimethylsilyloxy)-4,5-dimethoxy-6methoxymethyltetrahydropyran-2-yl-2-phenylethylcarbamic ome acid tert-butyl ester (14)

To a solution of **12** (0.380 g, 0.811 mmol) in CH₂Cl₂ cooled to -78 °C was treated with benzylmagnesium chloride (1 M in diethylether, 1.63 mL, 1.63 mmol) and the reaction mixture was stirred at -78 °C for 1 hour. The reaction was quenched with saturated aqueous NH₄Cl, warmed to room temperature and extracted with CH₂Cl₂. The organic layers were combined, washed with brine, dried with NaSO₄, filtered and concentrated under reduced pressure. The resulting oil was taken up in methanol (5 mL) and aqueous HCl (4 M, 2.00 mL, 8.16 mmol) was added. The reaction mixture was stirred for 1 hour at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The organic

layers were combined, washed with brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was taken up in CH₂Cl₂ (3 mL), triethylamine (2 mL) and di-*tert*-butyl dicarbonate (0.712 g, 3.26 mmol) were added and the solution was heated to 43°C for 8 hours. The reaction was cooled to room temperature, extracted with CH₂Cl₂, washed with 5 % aqueous HCl and brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (0.270 g, 68 %): 1 H NMR (300 MHz, CDCl₃) δ 7.30-7.17 (m, 5 H), 4.66 (br, 1 H), 4.17 (br, 1 H), 3.83 (dd, J = 7.6, 5.1 Hz, 1 H), 3.74 (app t, J = 5.5 Hz, 1 H), 3.75-3.63 (m, 1H), 3.54 (s, 3 H), 3.54-3.48 (m, 2 H), 3.48 (s, 3 H), 3.40 (s, 3H), 3.30 (d, J = 5.5 Hz, 1 H), 3.25 (d, J = 5.5, 1 H), 3.23-3.17 (m, 1 H), 2.52 (br, 1 H), 1.32 (s, 9 H), 0.93 (s, 9 H), 0.14 (s, 3 H), 0.09 (s, 3 H); 13 C (75 MHz, CDCl₃) δ 155.1, 138.4, 129.6, 128.2, 126.1, 84.0, 79.7, 77.6, 76.5, 73.2, 72.4, 71.5, 60.2, 59.4, 59.1, 51.8, 34.1, 28.3, 26.0, 18.0, -4.4, -4.6; IR (neat) 2930, 1710, 1109, 1030 cm⁻¹; [α]²⁵_D +36.49 (c 0.57, CHCl₃); HRMS (EI) calcd. for C₂₄H₄₀NO₆Si (M-C₄H₉O) 466.2625, found 466.2261.

1-(3-Hydroxy-4,5-dimethoxy-6-methoxymethyltetrahydropyran-2-yl)-2-phenylethylcarbamic acid *tert*-butyl ester

To a solution of **14** (230 mg, 0.431 mmol) in THF (5 mL) was added TBAF (340 mg, 1.29 mmol). The reaction mixture was stirred for 1 hour at room temperature, quenched with H_2O and extracted with EtOAc. The organic layers were combined, washed with brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (80% EtOAc in hexanes) to provide the desired product (140 mg, 76 %): 1H NMR (300 MHz, CDCl₃) δ 7.32-7.18 (m, 5 H), 4.82 (br, 1 H), 4.12 (br, 1 H), 4.03-3.94 (m, 1 H), 3.84 (br, 1 H), 3.72 (m, 1 H), 3.66 (dd, J = 10.3, 6.9 Hz, 1 H), 3.51-3.47 (m, 2 H), 3.47 (s, 3 H), 3.41 (s, 3 H), 3.40 (s, 3 H), 3.28 (app t, J = 3.4 Hz, 1 H), 2.98 (d, J = 6.6, 2 H), 1.61 (bs, 1 H), 1.40 (s, 9 H); ^{13}C (75 MHz, CDCl₃) δ 155.8, 138.3, 129.3, 128.1, 126.1, 79.0, 78.5, 76.6, 74.0, 70.2, 69.2, 68.5, 58.8, 58.2, 58.0, 53.8, 37.3, 28.2; IR (neat) 3360, 2930, 1712, 1114 cm⁻¹; [α] $^{25}_D$ +7.41 (c 0.27, CHCl₃); HRMS (EI) calcd. for $C_{18}H_{26}NO_6$ (M- C_4H_9O) 352.1760 found 352.1768.

1-(3-But-3-enyloxymethoxy-4,5-dimethoxy-6-methoxymethyltetrahydropyran-2-yl)-2-momethylcarbamic acid *tert*-butyl ester

To a solution of 1-(3-hydroxy-4,5-dimethoxy-6-methoxymethyltetrahydropyran-2-yl)-2-phenylethylcarbamic acid *tert*-butyl ester (428 mg, 1.01 mmol) in CH₂Cl₂ (5 mL) and DIPEA (3 mL) was added 4-chloromethoxy-but-1-ene⁶ (608 mg, 5.05 mmol) and the reaction mixture was heated to 40 °C and stirred for 8 hours. The solution was cooled to room temperature, saturated aqueous NH₄Cl was added and the reaction mixture was extracted with CH₂Cl₂. The organic layers were combined, washed with 5% aqueous HCl, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (497 mg, 97%): ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.18 (m, 5 H), 5.87-5.74 (m, 1 H), 5.12-5.02 (m, 2

H), 4.93 (d, J = 7.3 Hz, 1 H), 4.79 (d, J = 6.8 Hz, 1 H), 4.69 (d, J = 6.9 Hz, 1 H), 4.07 (br, 1 H), 3.89-3.79 (m, 2 H), 3.73 (br, 1 H), 3.70-3.55 (m, 3 H), 3.52-3.45 (m, 2 H), 3.46 (s, 3 H), 3.45 (s, 3 H), 3.39 (s, 3 H), 3.15 (app t, 1 H), 3.04 (dd, J = 13.6, 6.4 Hz, 1 H), 2.86 (br, 1 H), 2.32 (m, 2 H), 1.34 (s, 9 H); 13 C (75 MHz, CDCl₃) δ 155.3, 138.3, 135.1, 129.6, 128.3, 126.2, 116.6, 95.9, 78.1, 75.9, 73.5, 71.4, 70.7, 67.7, 65.6, 60.0, 59.1, 58.8, 58.7, 52.0, 34.1, 32.8, 28.3; IR (neat) 2930, 1720, 1172 cm⁻¹; [α]²⁵_D +18.7 (c 3.2, CHCl₃); HRMS (EI) calcd. for $C_{27}H_{44}NO_8$ (M+H) 510.3067, found 510.3079.

1,3-(4-Hydroxybutoxymethoxy)-4,5-dimethoxy-6-methoxymethyltetrahydropyran-2-yl-2-phenylethylcarbamic acid *tert*-butyl ester To a solution of 1-(3-but-3-enyloxymethoxy-4,5-dimethoxy-4

6-methoxymethyltetrahydropyran-2-yl)-2-phenylethylcarbamic acid *tert*-butyl ester (481 mg, 0.944 mmol) in THF (30 mL) cooled to -10° C was added BH₃•THF (4.72 mL, 1 M, 4.72 mmol) and the reaction mixture was stirred for 4 hours at -10 °C. The excess borane was quenched with H₂O followed by the addition of NaOH/HOOH solution (20% NaOH/30% HOOH, 1:1 by volume) (5 mL) and

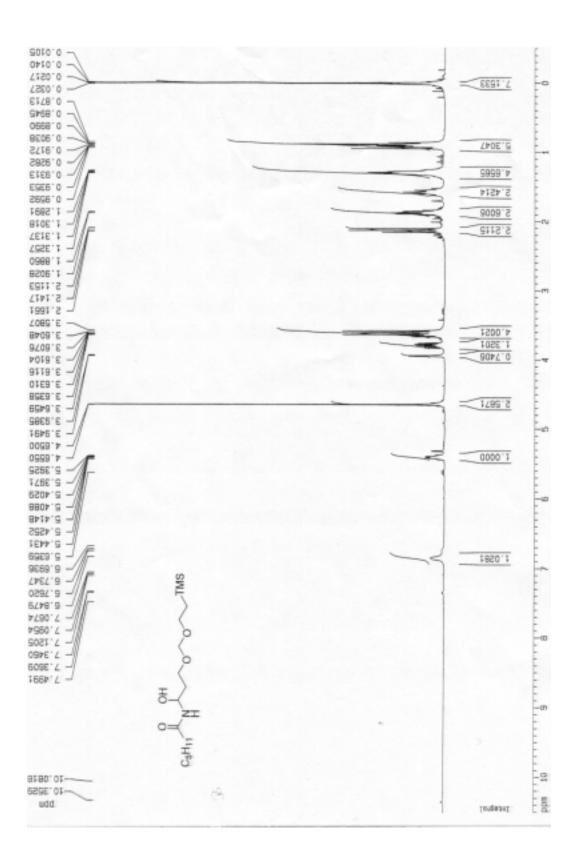
stirred for 4 hours at -10 °C. The excess borane was quenched with H₂O followed by the addition of NaOH/HOOH solution (20% NaOH/30% HOOH, 1:1 by volume) (5 mL) and the reaction mixture was stirred for 2 hours at room temperature. Saturated aqueous NaS₂O₃ was added and the reaction mixture was stirred for 1 hour at room temperature. The reaction mixture was extracted with EtOAc. The organic layers were combined, washed with brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (461 mg, 93%): ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.17 (m, 5 H), 4.95 (br, 1 H), 4.80 (d, J = 6.9 Hz, 1 H), 4.69 (d, J = 6.9 Hz, 1 H), 4.05 (br, 1 H), 3.84 (br, 1 H), 3.81 (dd, J = 5.6, 3.6 Hz, 1 H), 3.73 (br, 1 H), 3.66-3.37 (m, 7 H), 3.46 (s, 3 H), 3.45 (s, 3 H), 3.39 (s, 3 H), 3.19 (br, 1 H), 3.04 (dd, J = 13.6, 6.5 Hz, 1 H), 2.85 (br, 1 H), 1.96 (br, 1 H), 1.69-1.63 (m, 4 H), 1.36 (s, 9 H); 13 C NMR (75 MHz, CDCl₃) δ 155.4, 138.3, 129.6, 128.2, 126.2, 95.7, 78.0, 77.4, 75.8, 73.5, 73.5, 71.3, 70.5, 68.4, 62.5, 59.1, 58.9, 58.7, 52.0, 37.3, 29.6, 28.3, 26.2; IR (neat) 3452, 2932, 1707, 1107 cm⁻¹; $[\alpha]^{25}_{D}$ +14.2 (c 2.4, CHCl₃); HRMS (EI) calcd. for $C_{20}H_{38}NO_{9}$ (M- $C_{7}H_{7}$) 436.2547, found 436.2553.

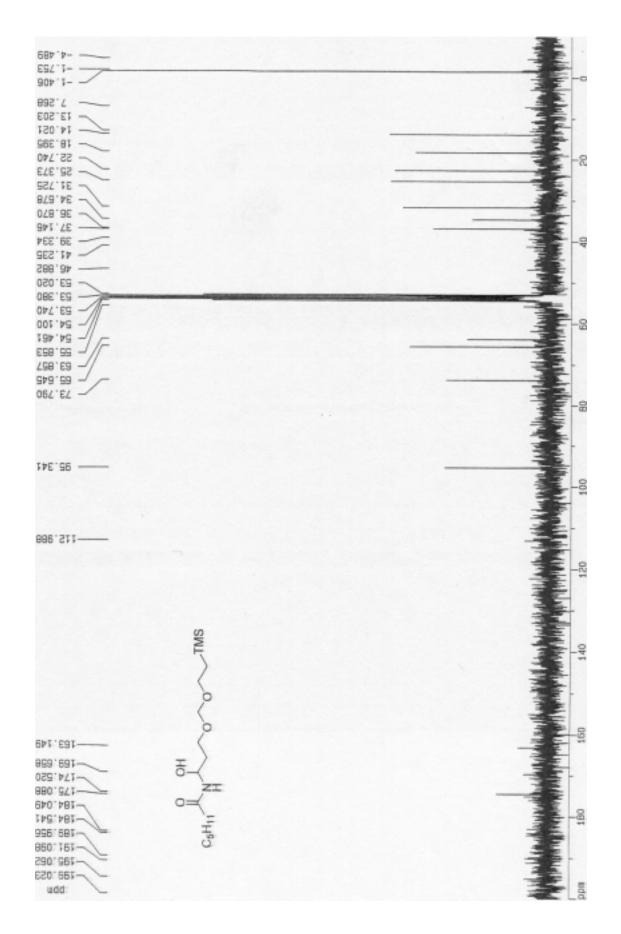
1-(4,5-Dimethoxy-6-methoxymethyl)-3-(tetrahydrofuran-2-yloxymethoxy)-tetrahydropyran-2-yl-2-phenylethylcarbamic acid *tert*-butyl ester (15) To a solution of 1,3-(4-hydroxybutoxymethoxy)-4,5-dimethoxy-6-

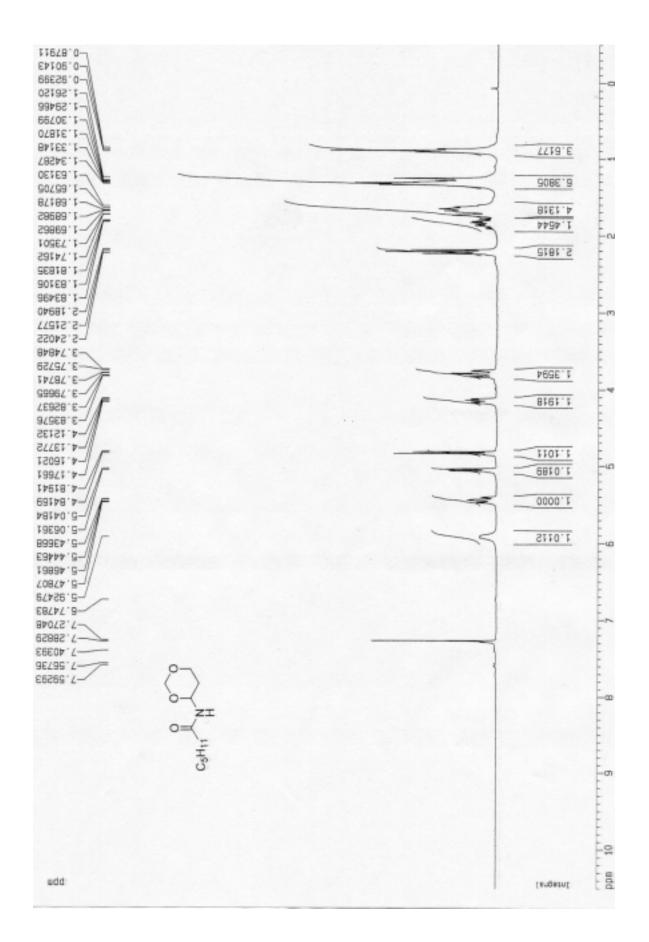
methoxymethyltetrahydropyran-2-yl-2-phenylethylcarbamic acid tert-butyl ester (47 mg, 0.09 mmol) in cyclohexane was added iodobenzene diacetate (63 mg, 0.20 mmol) and iodine (18 mg, 0.14 mmol) at room temperature. The reaction mixture was irradiated for 2 hours. The reaction mixture was extracted with EtOAc, washed with saturated aqueous NaSO₄ and brine, dried with NaSO₄, filtered, and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (30 mg, 64%) as a mixture of diastereomers: 1 H NMR (300 MHz, CDCl₃) δ 7.31-7.15 (m, 5 H), 5.41 (m, 0.6 H), 5.37 (m, 0.4 H), 4.98 (d, J = 6.8 Hz, 0.4 H), 4.97 (d, J = 6.8 Hz, 0.6 H), 4.91 (br,

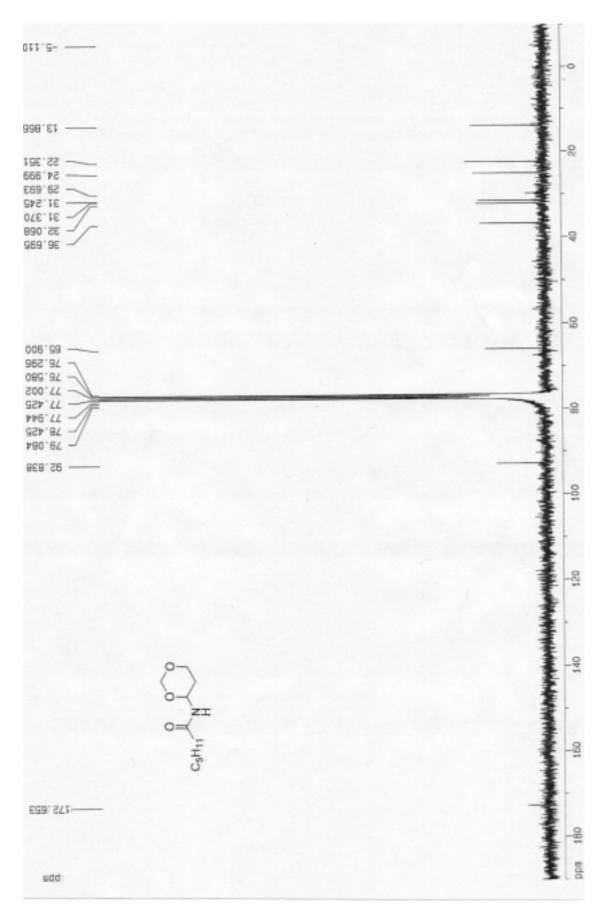
1 H), 4.77 (d, J = 6.8 Hz, 0.4 H), 4.65 (d, J = 6.8, 0.6 H), 4.10-4.02 (m, 1 H), 3.87-3.70 (m, 5 H), 3.55-3.40 (m, 4 H), 3.44 (s, 3 H), 3.43 (s, 3 H), 3.37 (s, 3 H), 3.20 (br, 1 H), 3.06 (d, J = 10.7, 5.0 Hz, 1 H), 2.83 (br, 1 H), 2.02-1.70 (m, 4 H), 1.34 (s, 9 H); 13 C (75 MHz, CDCl₃) δ 155.30, 155.23, 138.4, 138.3, 129.6, 128.2, 126.0, 100.9, 92.5, 91.3, 81.4 81.1, 79.0, 78.6, 75.1, 73.3, 73.3, 71.3, 71.2, 70.5, 67.1, 59.0, 58.9, 58.7, 51.7, 38.5, 38.2, 32.2, 32.1, 28.2, 23.2, 23.1; IR (neat) 2930, 1709, 1668, 1105 cm⁻¹; [α]²⁵_D + 28.0 (α) CHCl₃); HRMS (ES) calcd. for C₂₇H₄₂NO₉Na (M + Na) 548.2789, found 548.2836.

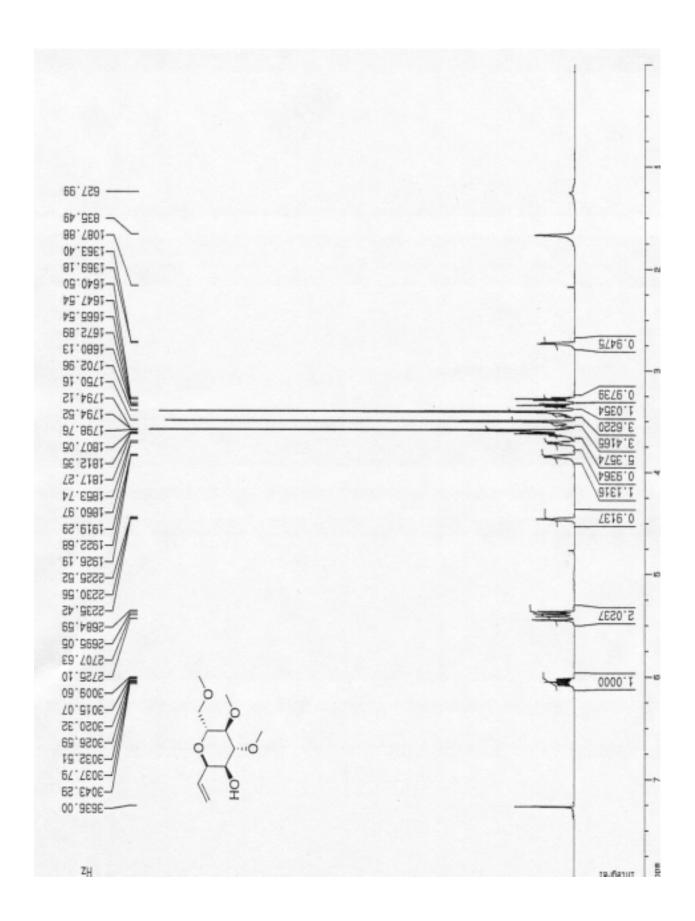
NHBoc OMe OMe

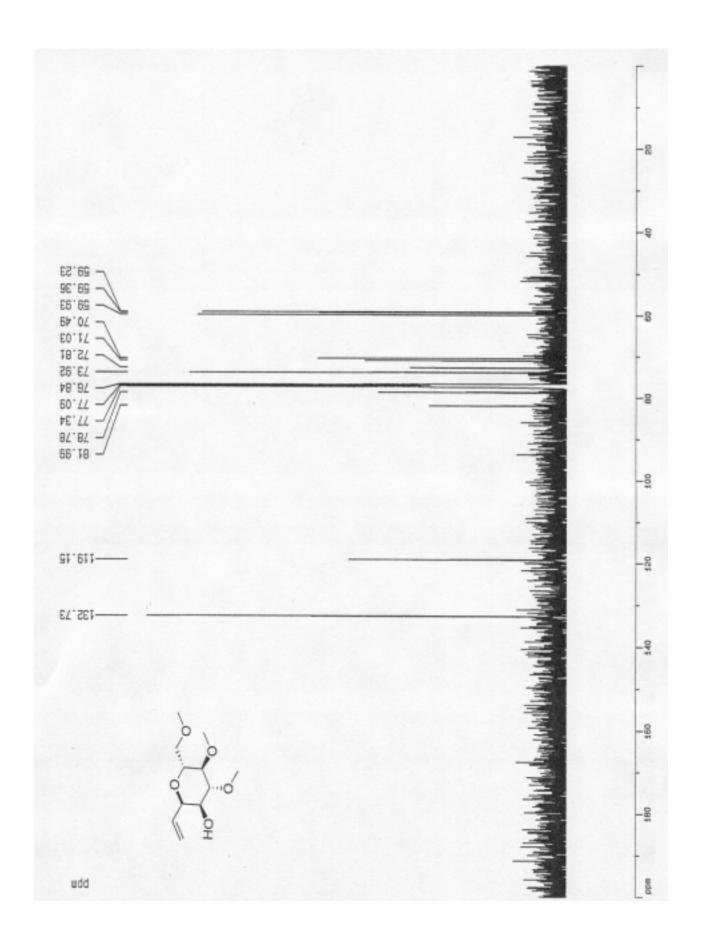

7,8-Dimethoxy-6-methoxymethylhexahydropyrano[3,2-d][1,3]dioxin-4-yl-carbamic acid tert-butyl ester

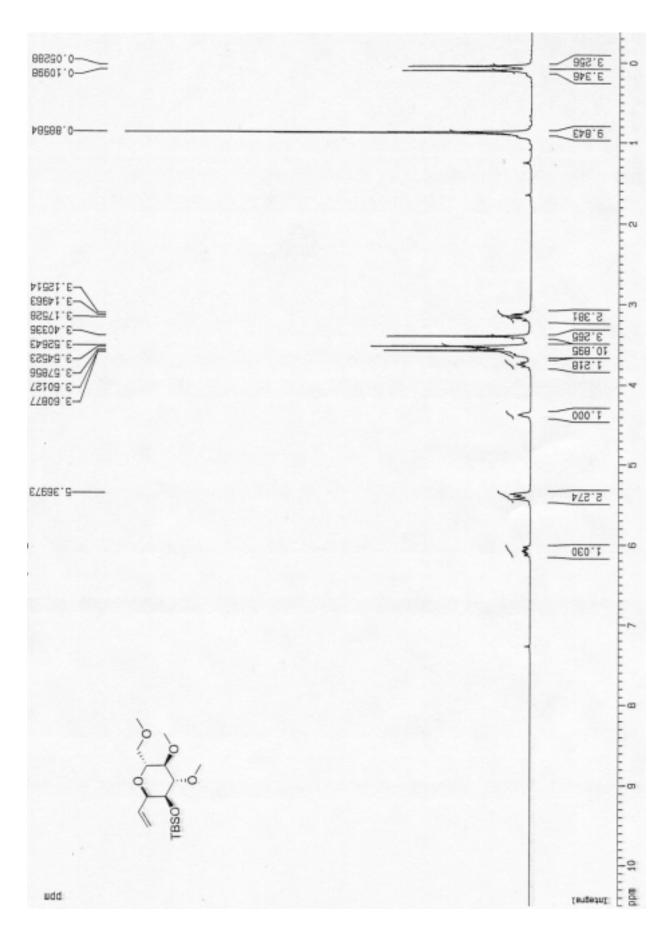

To a solution of **15** (29 mg, 0.05 mmol) in DCE (6 mL) was added NMQPF₆ (0.8 mg, .003 mmol), NaOAc (58 mg, 200 wt.%), Na₂S₂O₃ (58 mg, 200 wt.%), molecular sieves (58 mg, 200 wt.%) and toluene (1 mL).

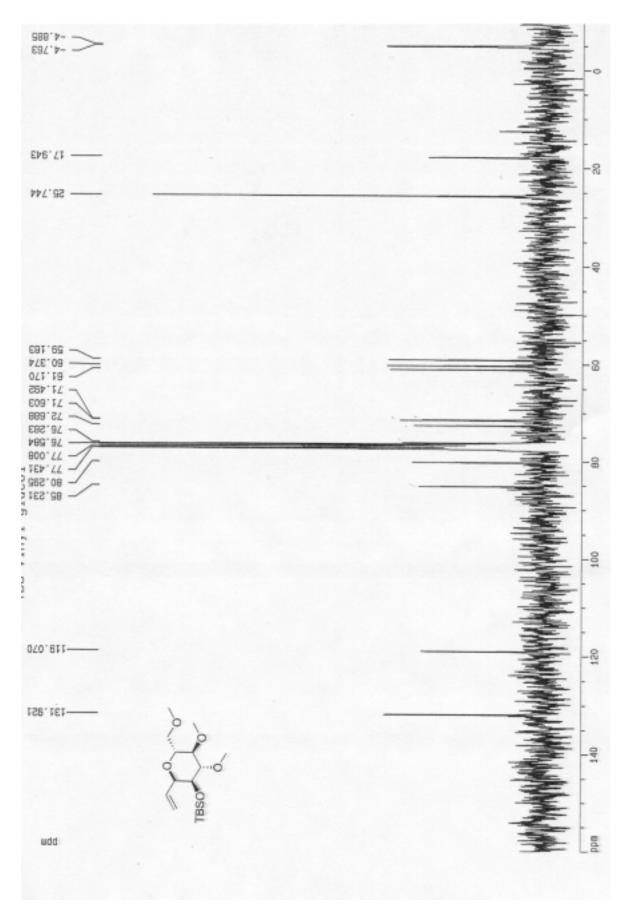

The suspension was stirred at room temperature for 30 minutes. Air was gently bubbled through the suspension while it was irradiated for 2 hours. The reaction mixture was filtered through a small plug of silica and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product (18 mg, 94%) a 10:1 mixture of diastereomers:

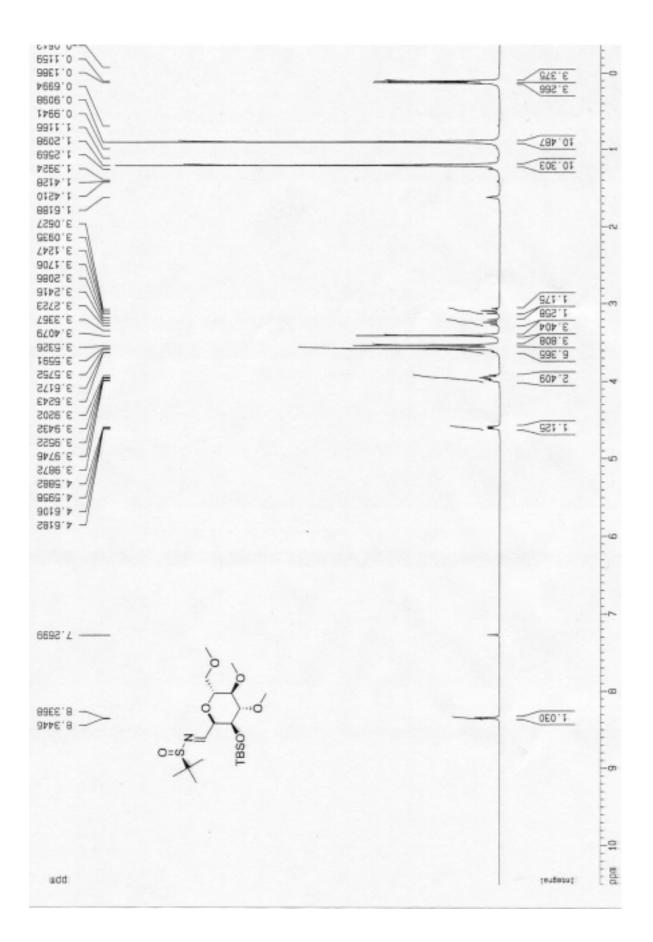

major diastereomer (16): ¹H NMR (300 MHz, CDCl₃) δ 5.97 (d, J = 9.7 Hz, 1 H), 5.12 (d, J = 6.7 Hz, 1 H), 5.08 (dd, J = 9.7, 1.4 Hz, 1 H), 4.84 (d, J = 6.7 Hz, 1 H), 4.17 (dt, J = 7.8, 4.0 Hz, 1 H), 3.92 (dd, J = 1.8, 1.8, 1 H), 3.72 (dd, J = 1.8, 1.8 Hz, 1 H), 3.62-3.60 (m, 2 H), 3.50 (dd, J = 3.8, 2.5 Hz, 1 H), 3.47 (s, 3 H), 3.47 (s, 3 H), 3.42 (s, 3 H), 3.31-3.29 (m, 1 H) 1.47 (s, 9 H); ¹³C (125 MHz, CDCl₃) δ 154.9, 91.6, 80.7, 80.5, 79.6, 76.8, 74.5, 73.5, 71.5, 65.5, 59.3, 58.4, 57.7, 28.3; IR (neat) 2922, 1724, 1500 cm⁻¹; [α]²⁵_D +17.87 (c 0.62 CHCl₃); HRMS (ES) calcd. for C₁₆H₂₉NO₈Na (M + Na) 386.1791, found 386.1828.

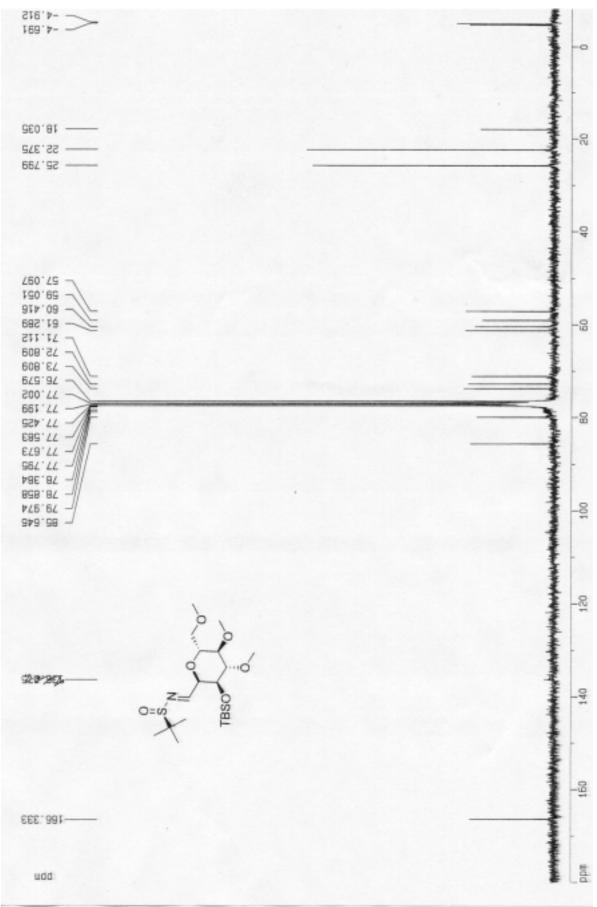

minor diastereomer (17): ¹HNMR (300 MHz, CDCl₃) δ 5.44 (dd, J = 9.3, 8.6 Hz, 1 H), 5.17 (d, J = 9.3 Hz, 1 H), 5.10 (d, J = 7.0 Hz, 1 H), 4.88 (d, J = 7.0 Hz, 1 H), 4.14 (dd, J = 9.6, 6.3 Hz, 1 H), 3.87 (app t, J = 9.0 Hz, 1 H), 3.76 (dd, J = 9.6, 6.3 Hz, 1 H), 3.70-3.64 (m, 1 H), 3.64 (s, 3 H), 3.75-3.50 (m, 2 H), 3.54 (s, 3 H), 3.38 (s, 3 H), 3.27-3.20 (m, 1 H), 1.47 (s, 9 H); ¹³C (75 MHz, CDCl₃) δ 155. 86.9, 81.1, 79.8, 79.0, 78.7, 77.9, 73.5, 71.2, 70.9, 60.8, 60.7, 59.3, 30.0, 28.5; [α]²⁵_D +47.53 (c 0.65 CHCl₃).

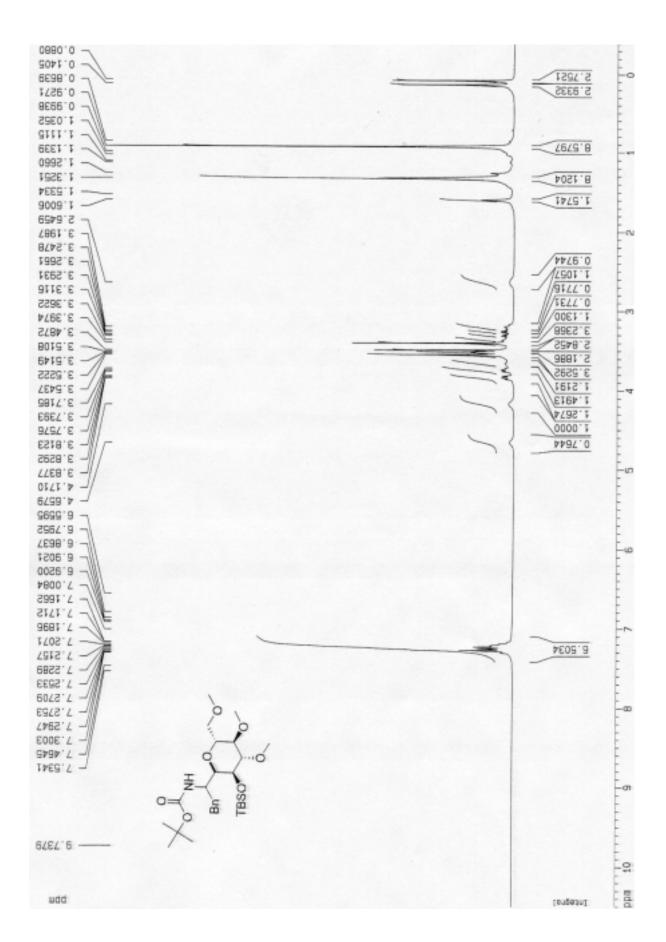


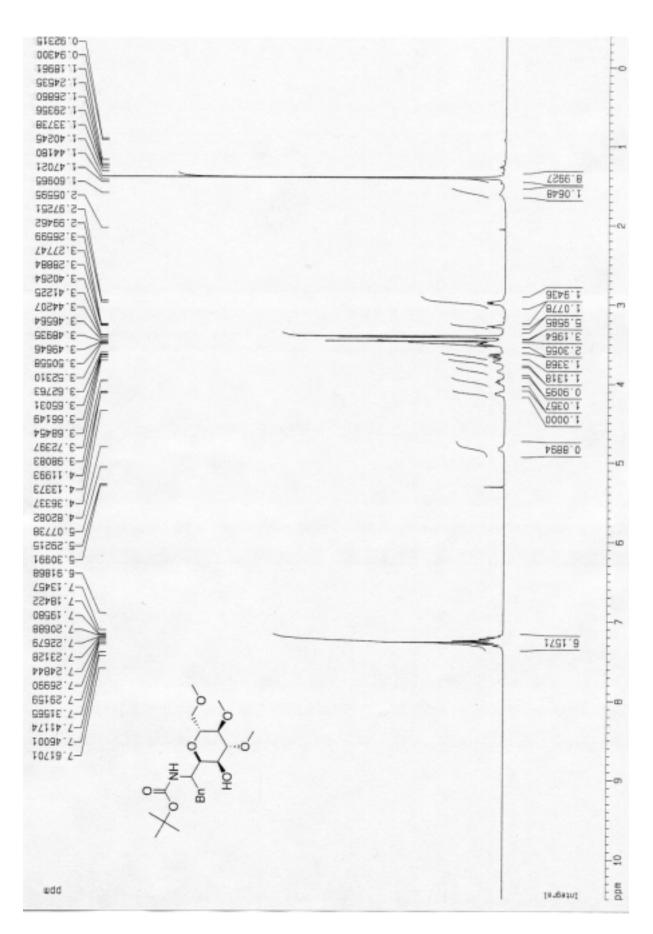


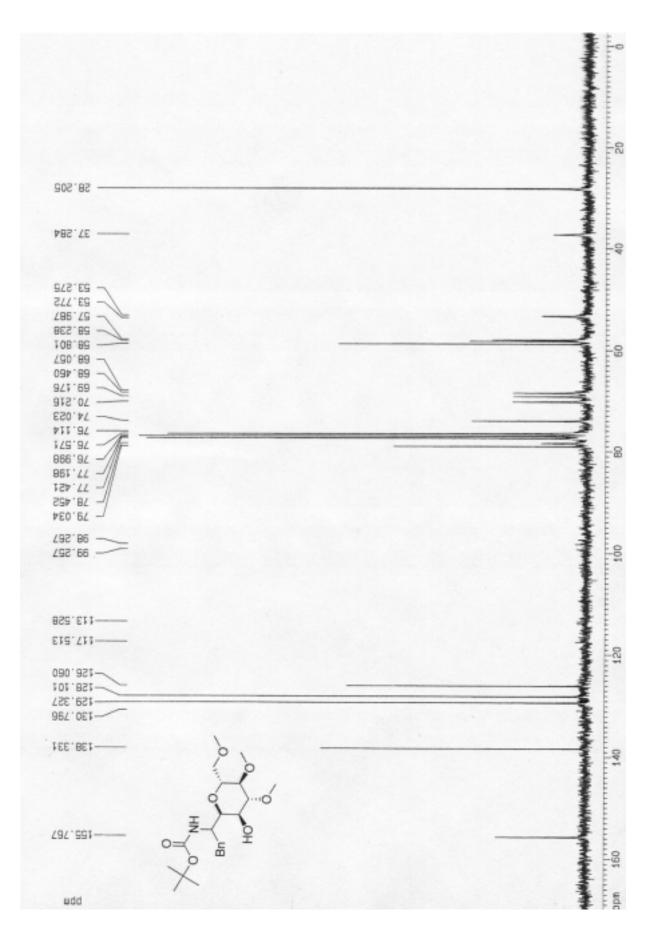


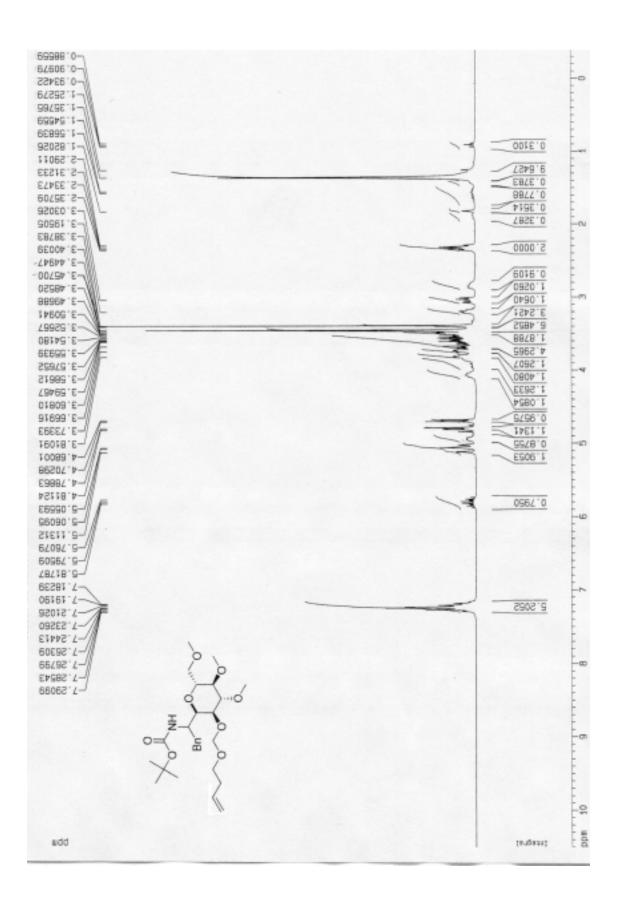


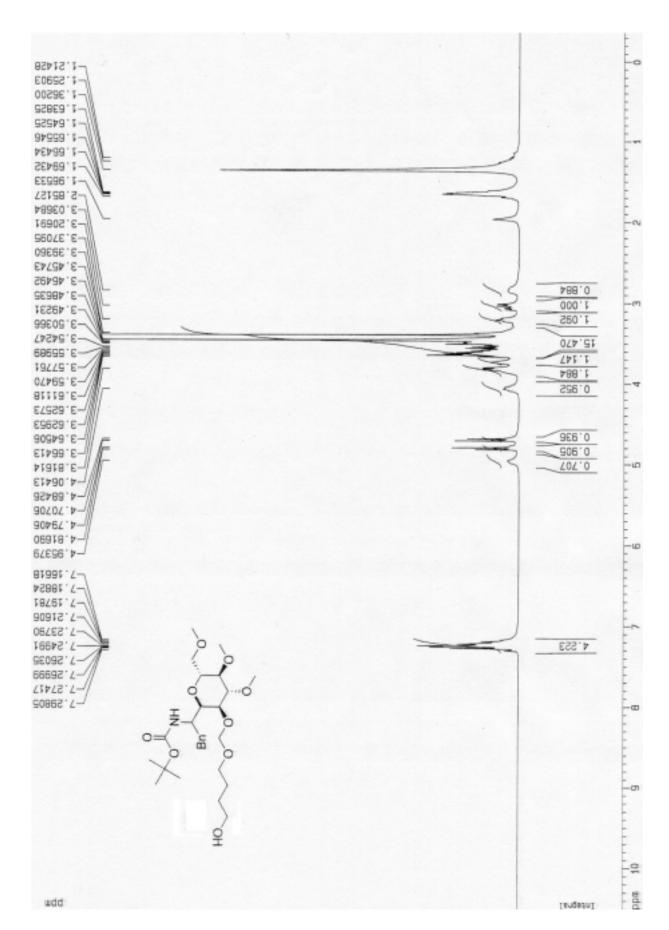


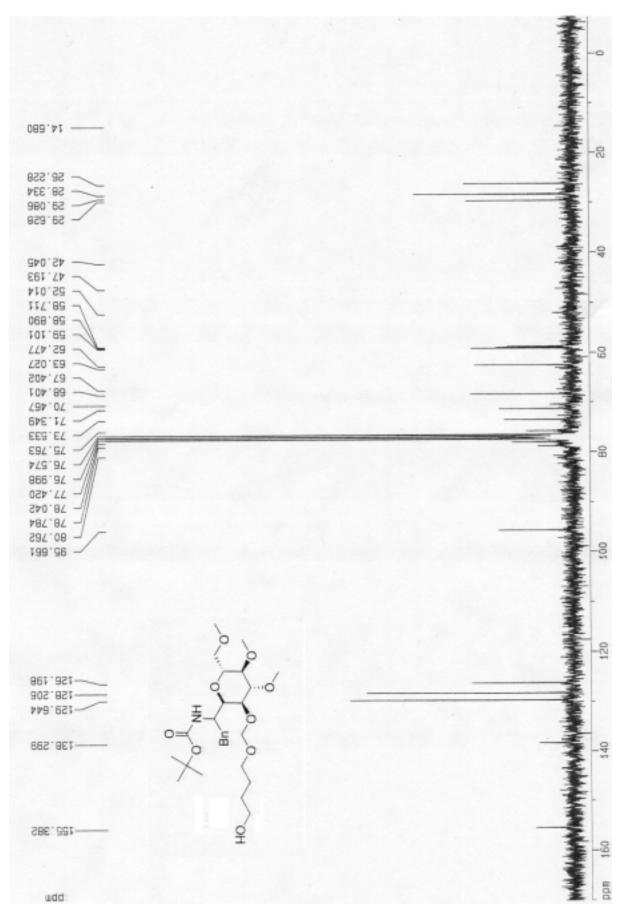


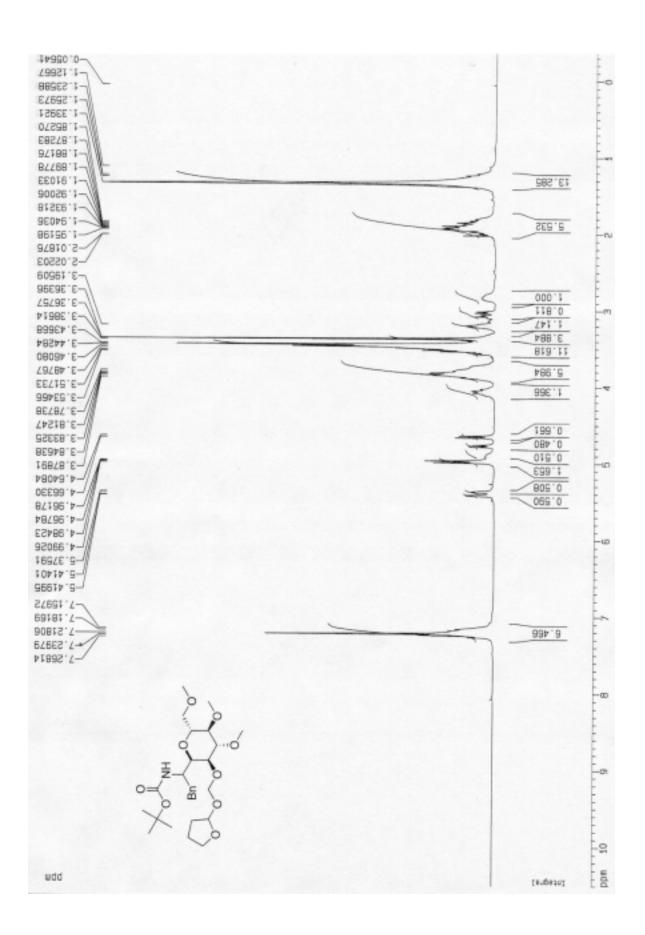


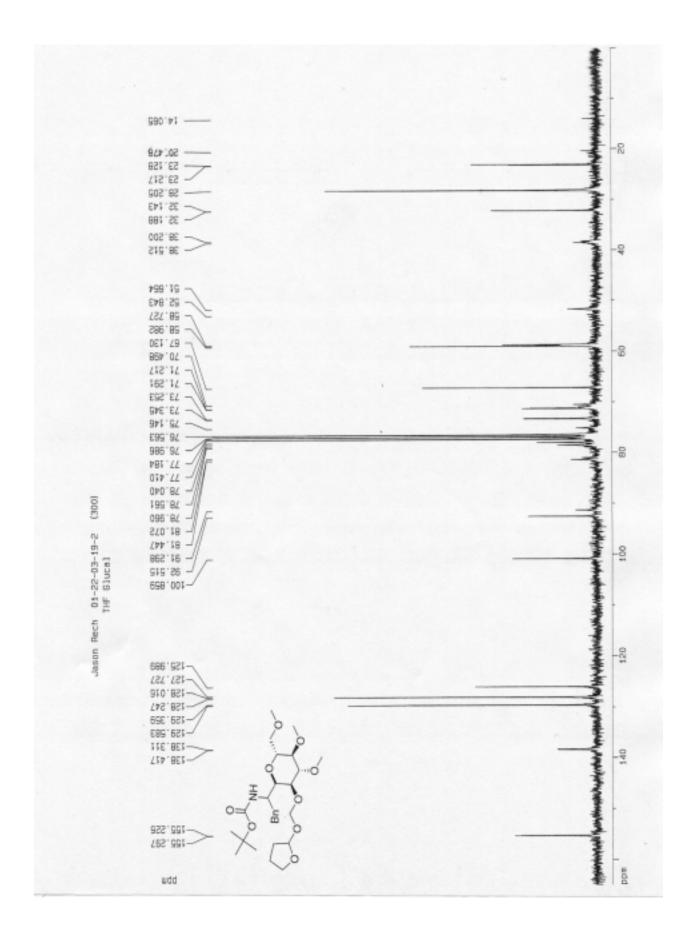


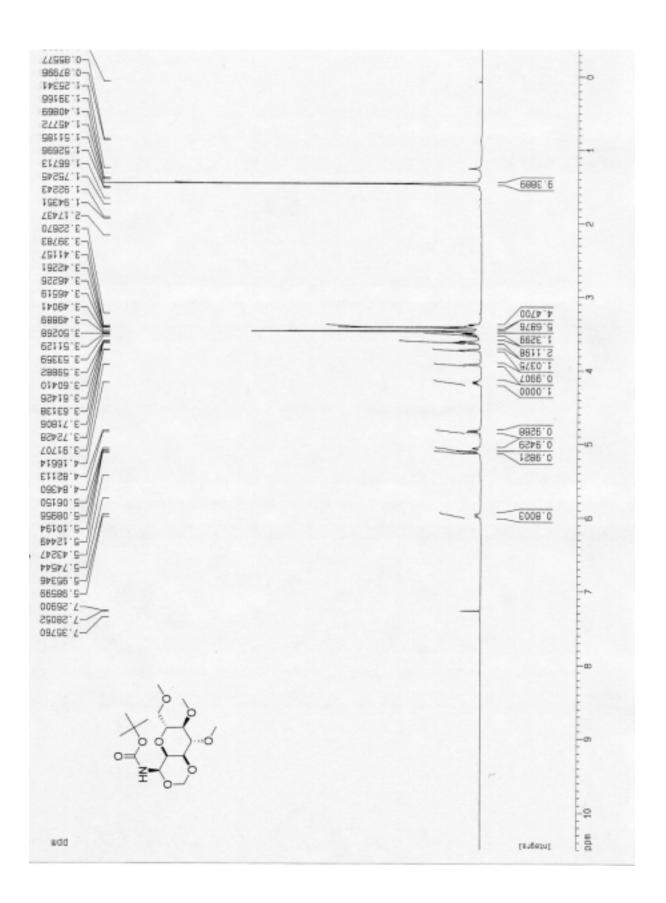


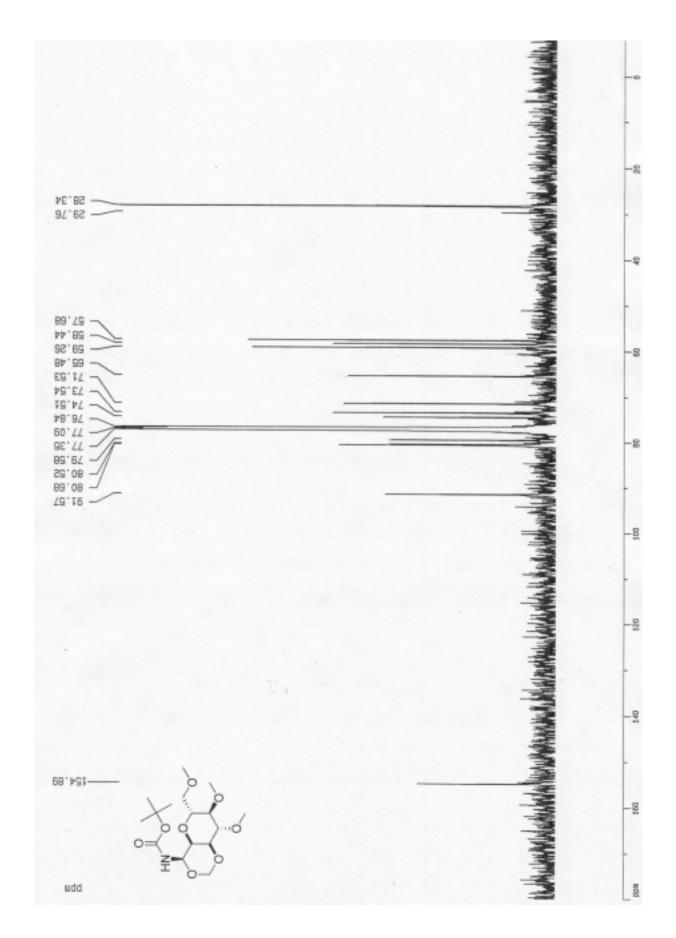


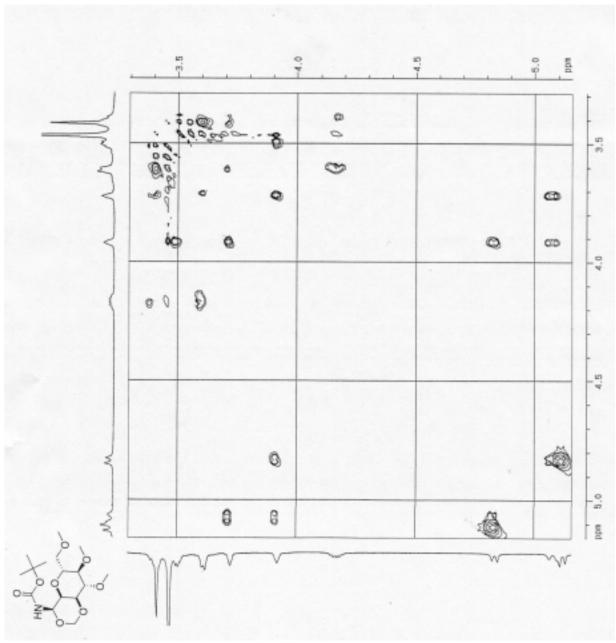


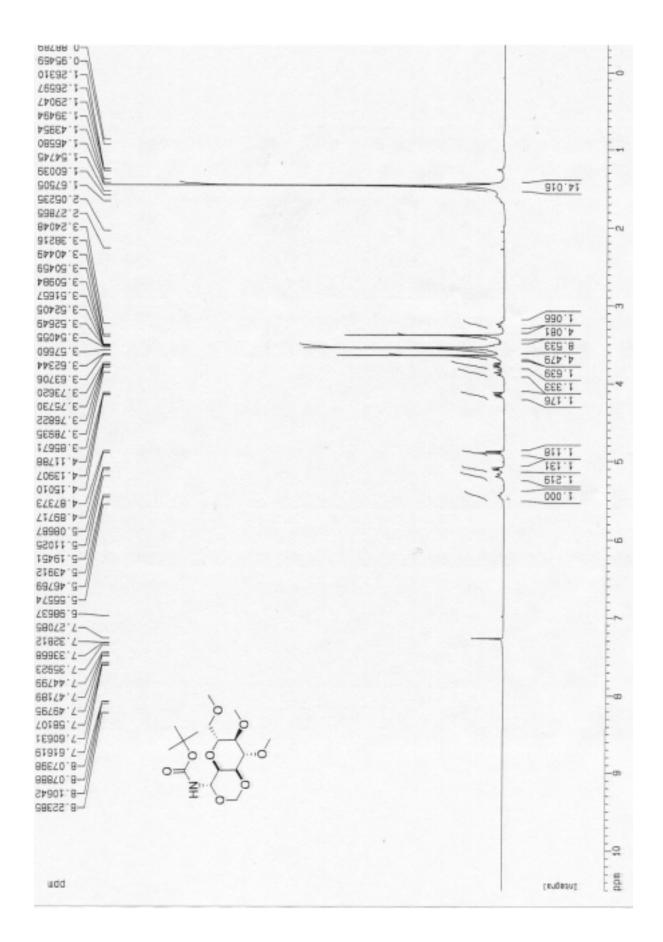


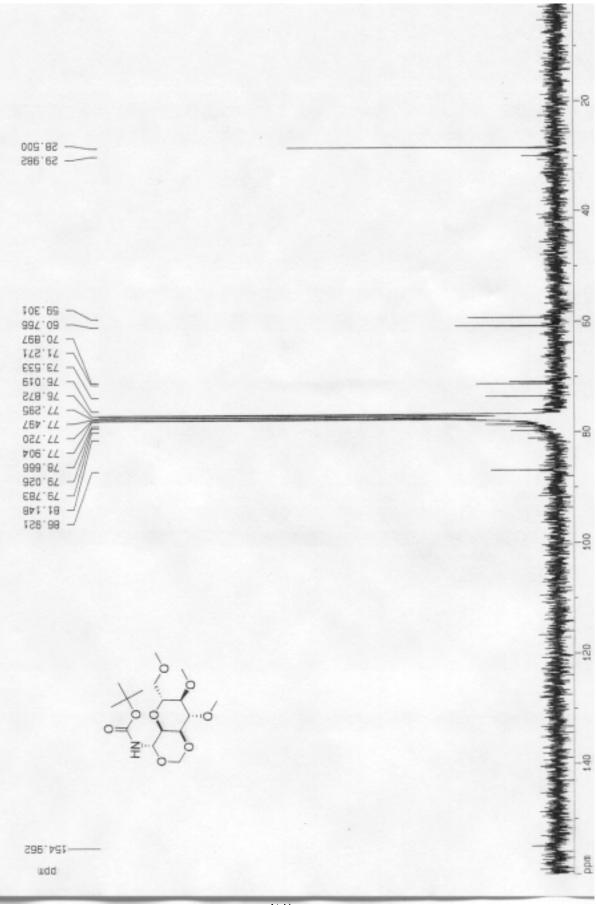


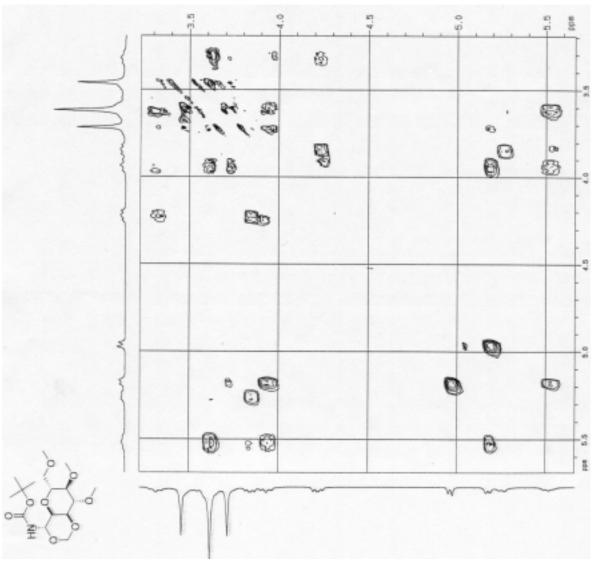












NOESY

NOESY

References:

- 1. Kumar, V. S.; Floreancig, P. E. J. Am. Chem. Soc. 2001, 123, 3843.
- 2. Paley, P. S.; Snow S. R. Tetrahedron Lett. 1990, 31, 5853.

- 3. Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124, 2377.
- 4. Gilbert, M.; Ferrer, G.; Sanchez-Baeza, F.; Messeguer, A. *Tetrahedron Lett.* **1996**, *37*, 3585.
- 5. Gilbert, M.; Ferrer, G.; Sanchez-Baeza, F.; Messeguer, A. *Tetrahedron* **1997**, *53*, 8643.
- 6. Bedford, C. D.; Harris, R. N.; Howd R. A.; Goff, D. A.; Koolpe G. A.; Petesch, M.; Koplovitz, I.; Sultan, W. E.; Musallam, H. A. *J. Med. Chem.* **1989**, *32*, 504.